qualifie un milieu, une masse d’eau, où la concentration en éléments nutritifs (= nutriments) est faible.
importante élévation du niveau de l’eau le long d’une côte, généralement provoquée par des vents de tempête.
la teneur en oxygène moléculaire dissous est un paramètre important qui gouverne la majorité des processus biologiques des écosystèmes aquatiques. La concentration en oxygène dissous est la résultante des facteurs physiques, chimiques et biologiques suivants :
Le pourcentage d’oxygène par rapport à la saturation doit également être pris en compte. La dissolution de l’oxygène dans l’eau est en effet régie par des lois physiques et dépend de la pression atmosphérique, de la pression de vapeur saturante, de la température de l’eau, de la salinité. Pour une valeur donnée de chacun de ces paramètres, la solubilité maximale de l’oxygène dans l’eau est appelée saturation. Tous les processus exclusivement mécaniques d’échange eau-atmosphère, tel que l’effet du vent ou de la houle, le ruissellement et le bullage, tendent à porter l’eau à son niveau de saturation en oxygène. Les états de sous-saturation et sursaturation ne peuvent donc être induits que par les phénomènes physico-chimiques, chimiques et biologiques sus-cités.
La solubilité de l’oxygène dans l’eau diminue en fonction de la salinité et de la température. A 20° C, la solubilité de l’oxygène est de 9 mg.1-1 dans l’eau douce et de 7,4 mg.1-1 dans de l’eau salée à 35°/oo.
Ce sont les processus biologiques qui ont généralement une influence prépondérante sur les concentrations en oxygène dans l’eau. Ainsi, dans les estuaires, des zones d’accumulation de détritus carbonés en décomposition peuvent devenir totalement anoxiques ; la nitrification de l’azote ammoniacal est également une source importante de déficits en oxygène. Par ailleurs, en zone eutrophe, des développements importants de phytoplancton ou de macroalgues peuvent engendrer des sursaturations diurnes atteignant 150 voire 200 %.